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Abstract
This paper starts with an introduction to the Onsager principle of minimum energy dissipation
which governs the optimal paths of deviation and restoration to equilibrium. Then there is a
review of the variational approach to moving contact line hydrodynamics. To demonstrate the
validity of our continuum hydrodynamic model, numerical results from model calculations and
molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past
homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also
used to study the contact line motion on surfaces patterned with stripes of different contact
angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick–slip
motion for contact lines moving along these patterned surfaces, in quantitative agreement with
molecular dynamics simulation results. This periodic motion is tunable through pattern period
(geometry) and contrast in wetting property (chemistry). The consequence of stick–slip contact
line motion on energy dissipation is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The contact line denotes the intersection of the fluid–fluid
interface with the solid wall. When one fluid displaces the
other, the contact line moves along the wall (see figure 1).
As a classical problem in continuum hydrodynamics, it has
been known for decades that the moving contact line (MCL)
is incompatible with the no-slip boundary condition [1]—
the latter leads to a non-integrable singularity in viscous
dissipation [2–5]. This MCL problem is directly related to
the study of wetting dynamics: understanding the dynamics of
fluids in the vicinity of the MCL is essential to a comprehensive
picture for the dynamic wetting behavior of liquids on solid
surfaces.
4 Author to whom any correspondence should be addressed.

The heart of the MCL problem lies in the boundary
condition(s) at the fluid–solid interface. In particular,
molecular dynamics (MD) simulations showed that fluid slip
indeed occurs at the MCL [6, 7]. Numerous models had
been proposed over the years [8–18], but none was able to
give a quantitative account of the fluid slip measured in MD
simulations. In fact, there has been a lasting debate over the
boundary conditions for a fluid flowing past a solid surface.
In recent years, the Newtonian flows in confined geometries
have received much attention, and numerous research efforts
have shown that fluid slip occurs at the solid boundary in many
circumstances [19, 20].

MD simulations have proven to be instrumental in
investigating the fluid dynamics in the molecular scale vicinity
of the MCL. Through analysis of extensive MD data, we
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Figure 1. Schematic illustration for immiscible two-phase flows, in
which the contact line moves relative to the solid wall. Due to the
contact line movement, the dynamic contact angle θd deviates from
the static contact angle θs which is determined by the Young equation
γ1 + γ cos θs = γ2 (in the partial wetting regime). Here γ1, γ2 and γ
denote the interfacial tensions for two fluid–solid interfaces and one
fluid–fluid interface.

found that the fluid slip measured in nanoscale MD simulations
is governed by the generalized Navier boundary condition
(GNBC) [21]. The GNBC states that the relative slip
velocity between the fluid and the solid wall is proportional
to the total tangential stress—the sum of the viscous stress
and the uncompensated Young stress; the latter arises from
the deviation of the fluid–fluid interface from its static
configuration. By combining the GNBC with the Cahn–
Hilliard hydrodynamic formulation for immiscible two-phase
flows [15, 16, 18, 21], we have obtained a continuum model
for MCL hydrodynamics [21]. Its numerical implementation
has produced continuum solutions in quantitative agreement
with MD simulation results [21, 22]. Recently, it has been
shown [23, 24] that the GNBC can be derived in a variational
approach based on the Onsager principle of minimum energy
dissipation [25, 26].

Textured surfaces with lateral patterns of varying
wettability have become technically available recently. There
have been experimental and theoretical studies on the
morphologies of liquid on surfaces patterned with hydrophilic
and hydrophobic regions [27, 28]. While the statics of wetting
on patterned surfaces already leads to a large variety of
morphologies, the dynamics of spreading and wetting on these
surfaces is even more complicated [29–31]. We have applied
our continuum model to study the contact line motion on
surfaces patterned with stripes of different contact angles [32].
We found that, as the fluid–fluid interface is displaced along
the patterned surface, its shape is periodically adjusted by
the underlying pattern and the contact line undergoes a stick–
slip movement with an oscillatory slip velocity, from which
extra dissipation arises inevitably. In this paper we will
further demonstrate that the continuum predictions for stick–
slip contact line movement can be quantitatively verified by
MD simulations. From the oscillatory fluid–fluid interface to
the intermittent stick–slip motion of the contact line, we have
quantitative agreement between the continuum and MD results.
This agreement is attributed to the accurate description by the
GNBC down to molecular scale.

This paper is organized as follows. In section 2, there
is a brief introduction to the Onsager principle of minimum
energy dissipation. The variational approach to MCL
hydrodynamics is then presented in section 3. In section 4, the
numerical predictions of our continuum hydrodynamic model
are compared with MD simulation results for immiscible flows
past homogeneous solid surfaces. Section 5 is devoted to the
study of contact line motion on chemically patterned surfaces,
from model calculations to MD simulations, with remarkable
agreement. The paper is concluded in section 6 with a few
remarks.

2. The Onsager principle of minimum energy
dissipation

First noted by Helmholtz, it is well known that, if the
fluid velocity is prescribed at the boundaries, then the
solution to the incompressible Stokes equation (with negligible
inertia forces) is unique and minimizes the rate of viscous
energy dissipation [1]. The variational principles involving
energy dissipation (or entropy production) have been further
developed by Rayleigh, Onsager and many other people.
Below we outline the Onsager principle of minimum energy
dissipation that foreshadowed many later developments in
statistical mechanics of dissipative systems [25, 26, 33]. As a
variational principle, the Onsager principle governs the optimal
paths of deviation and restoration to equilibrium. It shall be
applied as an approach to the derivation of equations of motion
(and, in the present case, boundary conditions as well), in
contrast to the principle of minimum free energy which is often
used to determine the global state of matter.

We consider a system described by one single variable
α measuring the displacement from equilibrium. The
overdamped dissipative dynamics is governed by the Langevin
equation

ηα̇ = −∂ F(α)

∂α
+ ς(t), (1)

where α̇ denotes the rate of change of α, η is the damping
coefficient, F(α) is the free energy function and ς(t) is
the white noise satisfying the correlation 〈ς(t)ς(t ′)〉 =
2ηkBT δ(t − t ′) with kB denoting the Boltzmann constant and
T the temperature. In equation (1) the dissipative force −ηα̇

is balanced by the conservative force −∂ F(α)/∂α plus the
stochastic force ς . The dynamics of the stochastic variable
α may be described by a probability density P(α, t) governed
by the Fokker–Planck equation:

∂ P

∂ t
= D

[
∂2 P

∂α2
+ 1

kBT

∂

∂α

(
∂ F

∂α
P

)]
, (2)

where the diffusion constant D is related to η through the
Einstein relation ηD = kBT . The stationary solution of
equation (2) is the equilibrium Boltzmann distribution Peq ∝
exp[−F(α)/kBT ]. The corresponding transition probability
for α at t to α′ at t + 	t is given by

P(α′, t + 	t|α, t) = 1√
4π D	t

exp

[
− (α′ − α)2

4D	t

]

× exp

[
− F(α′) − F(α)

2kBT

]
, (3)
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for α′ close to α and small 	t . By using the Einstein relation,
the two exponents can be combined:

P(α′, t + 	t|α, t) = 1√
4π D	t

exp

[
− A

2kBT

]
, (4)

where

A = η(α′ − α)2

2	t
+ [F(α′) − F(α)] ≈

[
η

2
α̇2 + ∂ F(α)

∂α
α̇

]
	t

(5)
is the quantity to be minimized in order to maximize the
probability of transition with respect to α′. For small 	t ,
instead of minimizing A with respect to α′, the same is
achieved by minimizing with respect to the rate α̇ = (α′ −
α)/	t . The simple minimization of A yields the equation of
force balance:

ηα̇ = −∂ F(α)

∂α
, (6)

without the stochastic force which has a zero mean.
The above results indicate that (a) there exists a functional,

of which the quantity A in equation (5) is the one-variable
version, which should be minimized with respect to the rates,
(b) such minimization leads to the balance of dissipative and
conservative forces on average and (c) the minimization yields
the equations of motion and the related boundary conditions,
which represent the most probable course of a dissipative
process. The last statement guarantees that, statistically, the
most probable course will be the only course of action observed
in a macroscopic system.

For the general case of multiple variables, the functional
for variation is of the form

A = 1

2

∑
i, j

ηi j α̇i α̇ j +
n∑

i=1

∂ F(α1, . . . , αn)

∂αi
α̇i , (7)

where the summation is to be replaced by integrals and partial
derivatives by functional derivatives if αi s are field variables.
In equation (7) the matrix of damping coefficients ηi j must be
symmetric due to the microscopic reversibility [25, 26].

3. A variational derivation of moving contact line
hydrodynamics

In modeling immiscible two-phase flows, the Cahn–Hilliard
free energy functional:

FCH[φ(r)] =
∫

dr
[

K

2
(∇φ)2 +

(
−r

2
φ2 + u

4
φ4

)]
, (8)

is introduced to stabilize the fluid–fluid interface as a diffuse
interface [34]. Here φ(r) is the field variable (called the
phase field) defined as (ρ2 − ρ1)/(ρ2 + ρ1) with ρ1(2) being
the number density of fluid 1 (2) at the spatial point r, and
K , r and u are material parameters. The values of K , r and
u can be determined from those of the fluid–fluid interfacial
thickness ξ = √

K/r , the interfacial tension γ = 2
√

2u2ξ/3r
and the minima φ± = ±√

r/u of the double-well potential
−rφ2/2 + uφ4/4. Among these three quantities, ξ and γ can
be measured in equilibrium MD simulations and φ± = ±1

is set to model the two immiscible fluids (though there is
partial miscibility in the narrow interfacial region where φ

varies between −1 and +1). There is also the interfacial free
energy per unit area at the fluid–solid interface, γfs(φ), which
changes continuously from the value γfs(−1) (for fluid 1) to
γfs(+1) (for fluid 2). We use γfs(φ) = (	γfs/2) sin(πφ/2),
which is a smooth interpolation from γfs(−1) = −	γfs/2 to
γfs(+1) = 	γfs/2. Here 	γfs denotes the change of γfs(φ)

from φ− = −1 to φ+ = +1, i.e. 	γfs = γfs(φ+) − γfs(φ−).
According to the Young equation γfs(φ−) = γfs(φ+)+γ cos θs,
where θs is the static contact angle, we have 	γfs = −γ cos θs

(in the partial wetting regime). The chemical potential μ in the
bulk and the similar quantity L at the fluid–solid interface are
defined through the variational form of the total free energy:

δ

{
FCH[φ] +

∫
dS γfs (φ)

}
=

∫
dr [μδφ] +

∫
dS [Lδφ],

(9)
where

∫
dS denotes the surface integral at the fluid–solid

interface and

μ = −K∇2φ − rφ + uφ3, (10)

L = K ∂nφ + ∂γfs(φ)/∂φ, (11)

with n denoting the outward surface normal.
In order to apply the variational principle, we first

construct the functional A for minimization with respect to the
relevant rates. There are two distinct parts in the functional
A in equation (7): the first part is the dissipation function
� = (1/2)

∑
i, j ηi j α̇i α̇ j , which is half the rate of dissipation,

being positive definite and quadratic in the rates α̇i s; the second
is the rate of change of the free energy Ḟ = ∑n

i=1 (∂ F/∂αi )α̇i .
Physically, there are four sources of dissipation: the bulk

viscous dissipation, the dissipation due to diffusion in the
fluid–fluid interfacial region, the frictional dissipation at the
fluid–solid interface and the relaxational dissipation around the
contact line. The rate of bulk viscous dissipation is of the
standard form

Rv =
∫

dr
[
η

2
(∂iv j + ∂ jvi )

2

]
, (12)

where η is the shear viscosity in the bulk fluid. Regarding the
fluid and solid similarly as collections of molecules but with
different interactions, we assume that the form of the energy
dissipation at the fluid–solid interface is similar to that of the
bulk viscous dissipation. It follows that the rate of the frictional
dissipation at the fluid–solid interface is of the form

Rs =
∫

dS [β(vslip
τ )2], (13)

where v
slip
τ is the slip velocity, defined as the relative velocity

in the tangential (τ ) direction between the fluid and the solid
at the fluid–solid interface, and β is the slip coefficient which
has the dimension of [viscosity]/[length]. Hence a slip length
may be defined as ls = η/β [35]. (The no-slip boundary
condition corresponds to the limit of infinite slip coefficient
β .) It is worth emphasizing that, while Rslip arises from

3
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the assumption of relative slip at the fluid–solid interface,
there is no specification of how much slippage there should
be. Even an infinitesimal slippage would lead to the form in
equation (13). Note that in both equations (12) and (13) the
rate variables (i.e. α̇i s in equation (7)) are the fluid velocities.

For small perturbations away from the two-phase
equilibrium (μ = const. and L = 0), there are dissipations due
to diffusion and relaxation. Here the relevant variable is φ, the
relative concentration of the two fluid species. As a conserved
parameter, φ satisfies the continuity equation

φ̇ = ∂φ

∂ t
+ v · ∇φ = −∇ · J, (14)

where J is the diffusive current density which is the rate
variable here. Since the rate of dissipation must be quadratic in
rate variables, we propose

Rd =
∫

dr
[

J2

M

]
, (15)

for the form of diffusive dissipation, where M is the mobility
coefficient. At the fluid–solid interface, φ is no longer
conserved because diffusive transport normal to the solid
surface is allowed (∂n Jn 	= 0 in general). The rate variable here
is φ̇ and correspondingly the rate of relaxational dissipation is

Rr =
∫

dS

[
φ̇2

�

]
, (16)

where � is a positive constant.
For the rate of change of the free energy Ḟ , we replace δφ

by ∂φ/∂ t = φ̇ − v ·∇φ in equation (9) and obtain

Ḟ =
∫

dr
[
μ

∂φ

∂ t

]
+

∫
dS

[
L

∂φ

∂ t

]
=

∫
dr [μ(φ̇ − v · ∇φ)]

+
∫

dS [L(φ̇ − v · ∇φ)] =
∫

dr [−μ∇ · J − μv · ∇φ]

+
∫

dS [Lφ̇ − Lvτ ∂τφ] =
∫

dr [∇μ · J − μv ·∇φ]

+
∫

dS [Lφ̇ − Lvτ ∂τφ] (17)

where φ̇ is replaced by −∇ · J according to the
continuity equation and integration by parts is used with∫

dr [∇ · (μJ)] = ∫
dS [μJn] = 0 from Jn = 0 at the solid

surface. Physically, the last line of equation (17) may be
decomposed into the entropy part and the work part, i.e. Ḟ =
−T Ṡ − Ẇ , where

T Ṡ =
∫

dr [−∇μ · J] +
∫

dS [−Lφ̇], (18)

and

Ẇ =
∫

dr [v · (μ∇φ)] +
∫

dS [vτ (L∂τ φ)]. (19)

While the entropy part T Ṡ comes from the diffusion and
boundary relaxation of the relative concentration φ, the work
part (Ẇ for the work done by the interface to the flow) shows
the ‘elastic’ force and stress exerted by the interface on the

flow. Here μ∇φ is the capillary force density and L∂τφ is the
(tangential) Young stress due to the fluid–fluid interface.

Now we write the functional A = (Rv+ Rs+ Rd+ Rr)/2+
Ḟ as

A[v(r), J(r), φ̇(r)] =
∫

dr
[

η

4
(∂iv j + ∂ jvi )

2

]

+
∫

dS

[
β

2
(vslip

τ )2

]
+

∫
dr

[
J2

2M

]
+

∫
dS

[
φ̇2

2�

]

+
∫

dr [∇μ · J] +
∫

dS [Lφ̇] +
∫

dr [−v · (μ∇φ)]

+
∫

dS [−vτ (L∂τ φ)] (20)

which is to be minimized with respect to the three rates
{v, J, φ̇}, supplemented with the incompressibility condition
∇ · v = 0. Minimizing A with respect to J involves only two
terms in equation (20) and gives the constitutive relation

J = −M∇μ. (21)

Substituting equation (21) into the continuity equation (14)
leads to the convection–diffusion equation

∂φ

∂ t
+ v ·∇φ = M∇2μ. (22)

Similar minimization with respect to φ̇ at the solid surface
leads to the boundary condition for relaxation of φ:

∂φ

∂ t
+ vτ ∂τφ = −�L . (23)

For minimization with respect to v, it is necessary to impose the
incompressibility condition ∇ ·v = 0 by the use of a Lagrange
multiplier λ(r) which leads to an extra term

∫
dr [λ∇ · v].

Then, minimizing A with respect to the fluid velocity results
in a group of volume integrals:

− η

∫
dr [∂ j(∂ jvi + ∂iv j )δvi ] −

∫
dr [μ∂iφδvi ]

−
∫

dr [∂iλδvi ] = 0, (24)

from which we obtain the Stokes equation:

− ∇ p + η∇2v + μ∇φ = 0, (25)

where the Lagrange multiplier appears through the pressure
p = −λ. In the presence of inertial forces, the Stokes equation
is immediately generalized to the Navier–Stokes equation:

ρm

[
∂v
∂ t

+ v ·∇v
]

= −∇ p + η∇2v + μ∇φ, (26)

where ρm is the mass density. Minimizing A with respect to
the (tangential) velocity at the fluid–solid interface results in a
group of surface integrals

η

∫
dS [∂nvτ δvτ + ∂τ vnδvτ ] + β

∫
dS [vslip

τ δvτ ]

−
∫

dS [L∂τφδvτ ] = 0, (27)

4
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from which the slip boundary condition is obtained in the form
of

βvslip
τ = −η(∂nvτ + ∂τ vn) + L∂τ φ. (28)

As the slip coefficient at the fluid–solid interface, β can be
different for the two fluid species. We use β = β(φ)

which is a function of local relative concentration. From our
derivation it is clear that equations (23) and (28), denoted
the generalized Navier boundary conditions, constitute a
consistent pair because they emerge consistently from the
principle of minimum energy dissipation. It is important to
note that L = 0 at equilibrium and the uncompensated Young
stress L∂τφ in equation (28) satisfies

∫
int

dτ [L∂τ φ] = γ (cos θd − cos θs), (29)

in the sharp interface limit [36]. Here
∫

int dτ denotes the
integration across the fluid–fluid interface along the tangential
direction and θd is the dynamic contact angle. Equation (29)
indicates that the uncompensated Young stress arises from
the deviation of the fluid–fluid interface from its static
configuration. The contact line motion is determined by
equations (22), (23), (26) and (28), supplemented by the
incompressibility condition ∇ · v = 0 and the impermeability
conditions vn = 0 and ∂nμ = 0 at the solid surface. It
is interesting to point out that, with noise terms added to
equations (22) and (26) in the bulk, the CH hydrodynamic
formulation has long been used to study the critical dynamics
in binary fluids, commonly referred to as Model H [37].

4. Comparison of MD and continuum
hydrodynamics results

MD simulations have been performed for immiscible two-
phase Couette and Poiseuille flows [21–23]. The two
immiscible fluids were confined between two planar solid walls
parallel to the xy plane, with the fluid–solid interfaces defined
at z = 0 and H . Interaction between the fluid molecules
was modeled by a modified Lennard-Jones potential Uff =
4ε[(σ/r)12 − δff(σ/r)6], where r is the distance between the
molecules, ε and σ are the energy and length scales of the
interaction, respectively, and δff = 1 for like molecules and
δff = −1 for molecules of different species. Each solid wall
was constructed by two [001] planes of an fcc lattice, with
each wall molecule attached to a lattice site by a harmonic
spring. The mean square displacement of wall molecules was
controlled to obey the Lindemann criterion. The fluid–solid
interaction was modeled by another modified Lennard-Jones
potential Ufs = 4εfs[(σfs/r)12 − δfs(σfs/r)6], with the energy
and range parameters εfs = 1.16ε and σfs = 1.04σ , and the
parameter δfs for tuning the wetting property of the fluid. The
interaction potentials Uff and Ufs were both cut off at rc =
2.5σ . The mass of the wall molecule was set equal to that of
the fluid molecule m, and the average number densities for the
fluids and wall were set at ρ = 0.81σ−3 and ρw = 1.86σ−3,
respectively. The temperature was controlled at 2.8ε/kB,
where kB is the Boltzmann constant. This high temperature
was used to suppress the fluid density oscillation along the

surface normal near the solid surface, for a better comparison
with the continuum model calculations (for uniform densities).
To maintain constant temperature, damping and a Langevin
noise were added to the equations for the y component of the
velocity. Since the y direction is perpendicular to the plane of
two-dimensional hydrodynamics (i.e. the xz plane), this does
not bias the flow fields. To induce the Couette flow, the top
and bottom walls were moved at a constant speed V in the
±x directions, respectively. Applying an external force mgx̂
on each fluid molecule induced the Poiseuille flow. Periodic
boundary conditions were imposed on the x and y boundaries
of the sample. Two different cases were considered in our
simulations. The symmetric case refers to identical fluid–solid
interactions for the two fluids (both of δfs = 1), with a 90◦
static contact angle. The asymmetric case refers to different
fluid–solid interactions, with δfs = 1 for one and δfs = 0.7 for
the other. The simulated fluids measured 6.8σ to 68σ between
the solid walls (for H in the z direction) and 6.8σ in the y
direction. The extension in the x direction was long enough,
typically about five times H , to allow the stationary single-
phase velocity field to appear in regions far away from the
fluid–fluid interface (see the following figures).

To demonstrate the validity of our continuum model
presented in section 3, we have obtained numerical solutions
that can be directly compared with the MD results for
fluid velocity and fluid–fluid interface. The Navier–Stokes
equation was solved using a pressure–Poisson solver [21] and
a semi-implicit scheme was employed to solve the fourth-
order diffusion equation for large systems. A detailed finite
difference scheme can be found in [21]. We have carried out
the MD–continuum comparison in such a way that virtually no
adjustable parameter is involved in the continuum calculations.
The details and parameter values can be found in [21]
and [22]. We want to emphasize that here the (macroscopic)
continuum model was solved for those nanoscopic systems
in our MD simulations. All the material parameters and
length and timescales in the continuum calculations were
measured or taken from MD simulations. The continuum
solutions were then compared with MD results directly. The
direct MD–continuum comparison involves no scaling between
microscopic (MD) and macroscopic (continuum) scales of
length and time. No free parameter was introduced into such
a comparison since our purpose here was to demonstrate the
validity of the model. Below we show the remarkable overall
agreement through a few examples. We want to point out
that the MD results in figures 2–5 were obtained for stationary
states in which the time average can be performed in arbitrarily
long time intervals to reduce the statistical fluctuations.

Figure 2 shows the MD and continuum fluid–fluid
interface profiles for two immiscible Couette flows. The
corresponding MD and continuum velocity fields are shown in
figure 3. In order to further verify that the continuum model is
local and the parameter values are local properties, and hence
applicable to different flow geometries, the MD–continuum
comparison is also presented for an immiscible Poiseuille flow
in figure 4.

Another important MD–continuum comparison is the
interpolation behavior between the near-complete slip at the

5
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Figure 2. Segments of the MD simulations for immiscible Couette
flows. The colored dots denote the instantaneous molecular positions
of the two fluids projected onto the xz plane. The black and gray
circles denote the wall molecules. The upper panel illustrates the
symmetric case of V = 0.25

√
ε/m and H = 13.6σ ; the lower panel

illustrates the asymmetric case of V = 0.2
√

ε/m and H = 13.6σ .
The red circles and blue squares represent the time-averaged
fluid–fluid interface profiles, defined at ρ1 = ρ2 (φ = 0). The black
solid lines are the interface profiles calculated from the continuum
model.

MCL (see figures 3 and 4) and the small amount of partial slip
far away from the contact line (for ls = η/β � H ). MD
simulations have been carried out for immiscible Couette flows
in increasingly wider channels [22]. The inset to figure 5 shows
the variation of tangential velocity at the wall. Immediately
next to the MCL, there is a small core region characterized by
a sharp decay of slip. As the channel width H increases, a
much more gentle variation of the slip profiles shows up. In

Figure 4. Comparison of the MD (symbols) and continuum (lines)
results for an asymmetric immiscible Poiseuille flow. An external
force mg = 0.05ε/σ is applied on each fluid molecule in the +x
direction, and the two walls separated by H = 13.6σ move at a
constant speed 0.51

√
ε/m in the −x direction to maintain a

stationary fluid–fluid interface. (a) Fluid–fluid interface. (b) vx (x) at
different z levels. The profiles are symmetric about the plane of
z = H/2, hence only the lower half is shown at z = 0.425σ (circles
and solid line), 2.125σ (squares and dashed line), 3.825σ (diamonds
and dotted line) and 5.525σ (triangles and dotted–dashed line).

order to reveal the nature of this slow variation, we plot in
figure 5 the same data in the log–log scale. The dashed line
has a slope −1, indicating the 1/x behavior of the slip profile,
where x is the distance away from the MCL. The plateau in
each single-phase flow region is formed at the constant amount
of slip v

slip
0 = 2Vls/(H + 2ls) due to the finite H . Obviously,

(a) (b)

Figure 3. Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx (x) and vx (x) at different z levels). (a) The symmetric
case in figure 2. The profiles are symmetric about the plane of z = H/2, hence only the lower half is shown at z = 0.425σ (circles and solid
lines), 2.125σ (squares and dashed lines), 3.825σ (diamonds and dotted lines) and 5.525σ (triangles and dotted–dashed lines). (b) The
asymmetric case in figure 2, shown at z = 0.425σ (circles and solid lines), 2.975σ (squares and long-dashed lines), 5.525σ (diamonds and
dotted lines), 8.075σ (up-triangles and dotted–dashed lines), 10.625σ (down-triangles and dashed lines) and 13.175σ (left-triangles and solid
lines). Although the solid lines are used to denote two different z levels in (b), for each solid line, whether it should be compared to circles or
left-triangles is self-evident.
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Figure 5. Log–log plot for the slip profiles. Here vx/V + 1 is the
scaled slip velocity at z = 0 (relative to the wall moving at −V x̂)
and x/σ measures the distance from the MCL. The vx (x) profiles
were obtained for five symmetric Couette flows, with different values
for H but the same value 0.05

√
ε/m for V . The MD (symbols) and

continuum (lines) results are shown for H = 6.8σ (black circles and
line), 13.6σ (red squares and line), 27.2σ (green diamonds and line),
54.4σ (blue up-triangles and line) and 68σ (orange down-triangles
and line). There are two lines for each color, one for the slip profile
to the left of the MCL and the other to the right of the MCL. The
dashed line has a slope of −1, indicating that the 1/x behavior is
approached for increasingly large H . Inset: the scaled tangential
velocity vx /V at z = 0, plotted as a function of x/σ .

as H/ ls → ∞ and v
slip
0 /V → 0 (no slip), the power-law

region becomes very wide. This large 1/x partial-slip region
indicates that the outer cutoff length scale (e.g. the system
dimension) would determine the integrated effects, such as the
total dissipation. In fact, the 1/x stress variation away from
the MCL has been known for decades [2]. However, to our
knowledge the fact that the partial slip also exhibits the same
spatial dependence was first presented in [22].

It is worth emphasizing that the MD–continuum
agreement has been achieved from the molecular scale vicinity
of the MCL to regions far away from the MCL. We want to
point out that the continuum model is local and the material
parameter values are local properties, applicable to different
flow geometries and different system sizes. That is, the same
set of model parameters (corresponding to the same local
properties in a series of MD simulations) has been used to
calculate velocity fields and fluid–fluid interface shapes for
comparison with MD results obtained for different external
conditions (e.g. V , H and flow geometry). The overall
agreement is excellent, demonstrating the validity of the
generalized Navier boundary conditions and the hydrodynamic
model.

5. Stick–slip motion of moving contact line on
chemically patterned surfaces

Our continuum model has also been used to study the contact
line motion on chemically patterned surfaces [32]. We

Figure 6. Schematic illustration for the chemically patterned surface
with alternating A-like and B-like stripes. Each stripe is characterized
by a static contact angle and two slip lengths. The A-like and B-like
stripes are of widths λa and λb and the pattern period is λ = λa + λb.

considered an immiscible two-phase fluid flowing past surfaces
patterned with stripes of different contact angles We found that
the shape of the fluid–fluid interface is periodically adjusted by
the underlying pattern and the contact line undergoes a stick–
slip movement with the slip velocity oscillating in both space
and time. The purpose of this section is to demonstrate that
the continuum predictions for stick–slip contact line movement
can be quantitatively verified by MD simulations. From the
oscillatory fluid–fluid interface to the intermittent stick–slip
motion of the contact line, we have obtained quantitative
agreement between the continuum and MD results. This
agreement is attributed to the accurate description by the
generalized Navier boundary conditions down to molecular
scale.

5.1. Modeling chemically patterned surfaces

We consider immiscible two-phase flows through a two-
dimensional channel (a slit pore) in which the top surface
is homogeneous (labeled by c) while the bottom surface is
chemically patterned. There are two immiscible phases A and
B in the two-phase fluid. The bottom surface is patterned by
the A-like and B-like stripes, labeled by a and b, respectively.
The A phase is more attracted to the A-like stripe while the
B phase is more attracted to the B-like stripe, as illustrated in
figure 6. The properties of each stripe can be specified by a
static contact angle (defined on the side of fluid phase B): θ a

s
at the A-like stripe (a) or θb

s at the B-like stripe (b), and two
slip lengths: la

sA and la
sB at the A-like stripe or lb

sA and lb
sB at

the B-like stripe for the two phases. To reduce the number
of independent parameters, we assume θb

s = 180◦ − θ a
s (with

θb
s < 90◦), la

sA = lb
sB and lb

sA = la
sB. Since larger slip length is

associated with a less attractive fluid–solid interaction [38], we
use la

sA < lb
sA.

In the present continuum modeling of inhomogeneous
surfaces, the static contact angle and slip lengths appear as
locally defined material parameters. For the patterned surfaces
shown in figure 6, each of these parameters varies as a step
function across the stripe boundary. In the study of single-
phase flows past chemically patterned surfaces [39–42], we
have shown through both MD and continuum simulations
that the slip length can be locally defined for a continuum

7
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Figure 7. MD simulation sample for the immiscible Poiseuille flows. The colored symbols indicate the instantaneous molecular positions
projected onto the xz plane. Here the fluid A is blue, the fluid B is red, the solid a is red, the solid b is green and the solid c is yellow. The fluid
B appears to be sandwiched by the fluid A due to the periodic boundary condition along the x direction. For the static contact angle
θ a

s (>90◦),we note that the fluid B is left to the fluid A on the A-like stripe here whereas in figure 6, B is to the right of A. We collect the data
for the interface with B to the right of A.

Table 1. Parameters measured from MD simulations for continuum hydrodynamic calculations. We use δAa > δBa > 0 and δBb > δAb > 0 to
ensure that the fluid A is more attracted to the A-like stripe and the fluid B is more attracted to the B-like stripe. We also assume δAa = δBb

and δAb = δBa to reduce the number of independent parameters. Consequently, we have θb
s < 90◦, θ a

s = 180◦ − θb
s and la

sA = lb
sB < lb

sA = la
sB

for the patterned surface. As for the homogeneous surface, we have δAc = δBc, hence θ c
s = 90◦ for the static contact angle and lc

sA = lc
sB for the

two slip lengths.

Parameters for MD simulations Parameters for continuum calculations

δAa = 0.7, δAb = 0.2, δAc = 0.7 θb
s ≈ 57◦, la

sA ≈ 1.9σ, lb
sA ≈ 14.3σ, lc

sA ≈ 1.9σ

δAa = 0.8, δAb = 0.2, δAc = 0.8 θb
s ≈ 47◦, la

sA ≈ 1.2σ, lb
sA ≈ 14.3σ, lc

sA ≈ 1.2σ

δAa = 0.7, δAb = 0.3, δAc = 0.5 θb
s ≈ 66◦, la

sA ≈ 1.9σ, lb
sA ≈ 10.3σ, lc

sA ≈ 4.6σ

hydrodynamic description as long as the fluid–solid interaction
does not change too fast compared to the pattern period [42].
Physically, a continuum hydrodynamic model describes those
variations that are slow in both space and time and the
parameters involved in such a model can be locally defined in
a coarse-grained sense.

5.2. Molecular dynamics simulations

MD simulations have been performed for two immiscible fluids
that are confined in a slit pore by two planar solid walls parallel
to the xy plane (see figure 7). The top wall has a homogeneous
surface at z = H and the bottom wall has a patterned surface
at z = 0. The top wall is labeled by c, and the two fluids
are labeled by A and B, respectively. The bottom wall is
periodically patterned with A-like and B-like stripes, which are
labeled by a and b, respectively, and are of widths λa and λb, as
already set in the continuum model. The extension of the MD
simulation box in the x direction is set as an integral multiple
of the pattern period λ = λa +λb, typically two to five times λ.
The values of H and λ will be given in section 5.4 where the
simulation results are presented.

In our MD simulations, interaction between any two
molecules separated by a distance r is modeled by a
modified Lennard-Jones potential Uαβ = 4εαβ[(σαβ/r)12 −
δαβ(σαβ/r)6], where the subscripts α and β denote the
molecule species A, B, a, b and c. The energy parameters
εαβ and the range parameters σαβ for fluid–fluid interactions
are given by ε and σ , respectively, while those for fluid–solid
interactions are given by 1.16ε and 1.04σ , respectively. The
dimensionless parameter δαβ is used to ensure the immiscibility
between the two fluids and to tune the wetting property of each
fluid as well. We use δAA = δBB = 1 and δAB = δBA = −1
to ensure the immiscibility, and δAa > δBa > 0 and δBb >

δAb > 0 for fluid–solid interactions, which ensure that the
fluid A is more attracted to the A-like stripe while the fluid

B is more attracted to the B-like stripe. To reduce the number
of independent parameters, we further assume δAa = δBb and
δAb = δBa. The two fluids have the same interaction with the
top wall, hence δAc = δBc. The mass of each fluid molecule
and that of each wall molecule are both m. The average number
density of fluid molecules is ρ = 0.81σ−3 while the number
density of wall molecules is ρw = 1.86σ−3. The temperature
is controlled at 1.4ε/kB by the Langevin thermostat. This
temperature is lower than that used in section 4 because weak
thermal fluctuations are desired considering the difficulty in
obtaining clean data from transient states. The equations of
motion are integrated using the velocity Verlet algorithm with a
time step 	t = 0.001τ , where τ = √

mσ 2/ε. The interaction
potential Uαβ is cut off at rc = 2.5σ . Periodic boundary
conditions are imposed in the x and y directions.

To drive the immiscible two-phase Poiseuille flows, a
body force mgx̂ is applied to each fluid molecule. In our
simulations, the two fluids are always separated by a clear
interface while flowing past the patterned surface. In both the
static and dynamic states, the average molecular densities ρ1

and ρ2 for the two fluids are measured to locate the interface
(by the condition ρ1 = ρ2, i.e. φ = 0). From the time
evolution of the interface, the contact line velocity is calculated
by differentiating the contact line position with respect to time.

As stated in section 5.1, the properties of each solid
surface (a, b or c), physically determined by the corresponding
fluid–solid interactions, can be specified by two slip lengths
(for the two fluids A and B) and a static contact angle (defined
on the side of fluid B). Given the fluid–solid interaction for one
fluid at one solid surface, the slip length can be measured from
non-equilibrium MD simulations in single-phase Couette-flow
geometry [38]. Given the fluid–solid interactions for two
fluids at one solid surface, the static contact angle can be
measured from equilibrium MD simulations. Results from
these measurements are listed in table 1. The shear viscosity
η = 2.0

√
εm/σ 2 and the fluid–fluid interfacial tension
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γ = 4.75ε/σ 2 are also measured for the continuum model
Once the number density and the temperature are specified
for a Lennard-Jones fluid, non-equilibrium simulations can be
carried out for Couette flows, in which the shear stress and
the shear rate are measured, from which the shear viscosity
η is computed. As to the interfacial tension γ , equilibrium
simulations can be carried out for two immiscible fluids with
an interface stabilized in between, and γ is computed by
integrating the magnitude of the stress anisotropy measured in
the interfacial region.

5.3. Continuum hydrodynamic calculations and comparison
with MD simulations

For continuum calculations, we have measured in MD
simulations the number density ρ, the shear viscosity η, the
interfacial tension γ , the interfacial thickness ξ ∼= 0.3σ , the
static contact angle θb

s and the slip lengths la
sA, lb

sA and lc
sA. As

for the two phenomenological parameters M and �, we use
M = 0.023σ 4/

√
mε and � = 0.66σ/

√
mε, optimized values

for earlier comparison of continuum and MD results [21–23].
The two fluid phases may have different interactions with the
solid, and hence the slip coefficient β may vary with φ at the
surface. At each stripe (a or b), we use β(φ) = (1 − φ)β1/2 +
(1 + φ)β2/2 with φ varying between −1 and +1 across the
fluid–fluid interface and β varying between β(−1) = β1 and
β(+1) = β2 accordingly.

Continuum calculations are carried out for immiscible
two-phase flows through a slit pore with homogeneous top
surface and patterned bottom surface. The flow is driven by
an external force density fe = ρmgx̂ along the x direction, for
direct comparison with MD simulations in which an external
force mgx̂ is applied to each fluid molecule. Appropriate
velocity boundary conditions are applied at the left and right
boundaries of the channel in the computational domain, given
by the Poiseuille-type quadratic profile v(z) = vx(z)x̂ which
satisfies η∂2

z vx + ρmg = 0 and the slip boundary conditions at
the top and bottom surfaces. We use a pressure–Poisson solver
for the Navier–Stokes equation and a semi-implicit scheme for
the diffusion equation [21, 22]. For direct comparison with
the MD results, the continuum results will be presented in the
reduced units defined by the Lennard-Jones energy scale ε,
length scale σ and molecular mass m

For contact line motion on patterned surfaces, the
comparison of continuum and MD results can no longer
be made for stationary states in which the continuum
hydrodynamic variables, e.g. φ and v, are time-independent
(see section 4). Instead, the stick–slip movement of
the contact line requires such a comparison to be done
for transient states in which the fluid–fluid interface takes
oscillatory shape while the contact line moves at oscillatory
velocity. Technically, in order to resolve the time evolution
in continuum hydrodynamics, the time averaging in MD
simulations has to be performed within time intervals that are
short enough compared to the characteristic timescales shown
in the continuum solutions. To further remove the statistical
fluctuations, we also average the velocity and density variables
over an ensemble of similar systems, generated by a series of
simulations consistent with all the ‘macroscopic’ restraints.

Figure 8. (a) Moving fluid–fluid interface in MD simulation. The
time interval between two adjacent interfaces is 8τ . (b) Moving
fluid–fluid interface in continuum calculation. The time interval
between two adjacent interfaces is 7τ . (c) Contact line velocity at the
lower patterned surface, plotted as a function of the contact line
position, with symbols for MD results and line for continuum results.
The parameters used for interaction potentials are
δAa = δBb = δAc = δBc = 0.7 and δAb = δBa = 0.2. The external
force on each fluid molecule is mg = 0.015ε/σ . The distance
between the bottom and top walls is H = 17σ . The pattern period is
λ = 80σ with λa = λb.

5.4. Numerical results

In order to let the relaxation of the fluid–fluid interface be
fully manifested, we start from patterned surfaces of large
period. Figure 8 shows the variations of fluid–fluid interface
and contact line velocity along the patterned surface (at the
bottom of the channel). It is observed that the fluid–fluid
interface is displaced with constant shape and velocity when
it is away from the boundaries between different stripes. Close
to each of these boundaries, however, there is a fast variation
in contact line velocity, either a sharp increase followed by a
gentle decrease or a sharp decrease followed by an increase.
That is, the contact line is forced into an intermittent stick–slip
motion by the patterned surface. It is readily seen that the fast
variation of contact line velocity is always accompanied by the
adjustment in shape of the fluid–fluid interface when it crosses
a boundary between two different stripes. Therefore, the
stick–slip motion arises from the contrast in wetting property
(i.e. static contact angle) between the two different types of
stripes. In spite of the statistical fluctuations in MD simulations
for transient behaviors, we have excellent agreement between
the continuum and MD results, from interface shape to contact
line velocity, down to molecular length scales (a few molecular
diameters).

Induced by the switch of an equilibrium wetting property,
the stick–slip motion must persist for vanishingly small driving
force or average displacement velocity. Figure 9 shows
the contact line velocities for three different driving forces.
Besides the remarkable MD–continuum agreement, it is seen
that, as the driving force is gradually reduced, the velocity in
the ‘plateau’ region is also reduced and the dip in velocity

9
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Figure 9. Contact line velocity at the lower patterned surface, plotted
as a function of the contact line position, with symbols for MD
results and lines for continuum results. The parameters used for
interaction potentials are δAa = δBb = δAc = δBc = 0.7 and
δAb = δBa = 0.2. The external force on each fluid molecule is
mg = 0.015ε/σ (diamond, cyan), 0.01ε/σ (triangle, magenta) and
0.005ε/σ (circle, blue). The distance between the bottom and top
walls is H = 17σ . The pattern period is λ = 60σ with λa = λb.

(as the interface moves from the A-like stripe to the B-like
one) becomes shallower. However, the velocity peak, which
appears as the interface moves from the B-like stripe to the A-
like one, persists. In particular, the height of the peak, i.e. the
difference between the maximum velocity and the plateau
velocity, actually approaches a constant as the driving force
approaches zero. Therefore, in the limit of zero driving force
or average displacement velocity, the contact line velocity
is everywhere close to zero except around those boundaries
where the contact line is quickly driven by the switch of static
contact angle

Consider an immiscible flow over a homogeneous surface
with a steady displacement velocity U . The rate of energy
dissipation scales as U 2 for small U according to the
general rule governing the entropy production in irreversible
thermodynamic processes. On patterned surfaces, however,
the fluid–fluid interface has to undergo a periodic stick–
slip movement with an oscillatory shape, from which extra

Figure 10. (a) Contact line velocity at the lower patterned surface, plotted as a function of the contact line position, with symbols for MD
results and line for continuum results. The parameters used for interaction potentials are δAa = δBb = 0.7, δAb = δBa = 0.3 and
δAc = δBc = 0.5. The external force on each fluid molecule is mg = 0.012ε/σ . The distance between the bottom and top walls is H = 30.8σ .
The pattern period is λ = 24σ with λa = λb. (b) Same as for (a) except that the pattern period is λ = 16σ . (c) Same as for (a) except that the
pattern period is λ = 8σ . (d) Moving fluid–fluid interface in MD simulation. The time interval between two adjacent interfaces is 4τ .
(e) Moving fluid–fluid interface in continuum calculation. The time interval between two adjacent interfaces is 3.6τ .
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dissipation arises inevitably. For slow flows on surfaces
patterned with wide stripes, the rate of energy dissipation still
scales as U 2 in (wide) plateau regions of velocity (away from
the boundaries between different stripes). Here U denotes
the average displacement velocity. The contribution to time-
integrated dissipation over a time period T = λ/U scales
as U 2(λ/U) ∼ U . On the other hand, the stick–slip motion
becomes independent of U as U → 0 Consequently, the time-
integrated extra dissipation incurred by the fluid–fluid interface
crossing a boundary is independent of U . Comparing the above
two contributions to time-integrated dissipation, we see that
the extra dissipation dominates and the time-averaged rate of
energy dissipation is linear in U to the leading order.

The adjustment of fluid–fluid interface in shape is fully
manifested in slow flows on surfaces patterned with wide
stripes. In particular, the timescale associated with the full
interfacial adjustment is well defined in the limit of slow
flows and wide stripes. When the pattern period is shortened
and/or the interface displacement is quickened, the time
for the interface to cover a period (i.e. λ/U ) may become
smaller than the time required for full interfacial adjustment.
As a consequence, the interface can only partially respond
to the switch of static contact angle when displaced along
the patterned surface. If such partial response is further
suppressed, then the interface moves as if over an almost
homogeneous surface with nearly constant velocity and shape.
Using both the MD and continuum results with remarkable
agreement, figure 10 shows the approach to an effectively
homogeneous surface as the pattern period is reduced. It is
seen that the amplitude of velocity oscillation decreases with
decreasing period. Moreover, the interface shape changes
very little when the pattern period is small enough. Note
that a relatively large distance H = 30.8σ has been used to
slow down the interfacial adjustment. Our numerical results
(not presented here) also confirm that, if the pattern period is
fixed, then oscillations in contact line velocity and interface
shape can be suppressed as well through accelerated interface
displacement.

6. Concluding remarks

Following the variational derivation of our continuum model
for MCL hydrodynamics, we have presented numerical results
from both continuum calculations and MD simulations for
fluid velocity and fluid–fluid interface in immiscible flows
past homogeneous and patterned surfaces, with remarkable
quantitative agreement. This should not come as a surprise
because the continuum hydrodynamics is governed by the
same statistical mechanical principle as that underlying
molecular dynamics, and the same (time-averaged) dynamic
behavior is expected.

Compared to the steady flows past homogeneous surfaces,
the transient states of immiscible flows past chemically
patterned surfaces present new challenges for the test of the
continuum model. First, the contact line slip velocity oscillates
in both space and time. Through ensemble averaging on top of
short time averaging, statistical fluctuations in MD simulations
are reduced to such an extent that the oscillatory behavior

predicted by the continuum model can be clearly verified.
Second, depending on the contrast in wetting property (i.e. the
magnitude of contact line switch), the contact line slip velocity
can be made very large momentarily by the abrupt increase
of uncompensated Young stress according to the GNBC (see
equations (28) and (29)). Nevertheless, our model is still able
to quantitatively reproduce this fast variation over a molecular
scale short distance.

Finally, we want to point out that there are limitations and
inadequacies in the present approach. Our MD simulations are
for the simplest monatomic fluids, and our continuum model is
a minimal model, in which the density is uniform even in the
interfacial region, the viscous stress is simply Newtonian and
the long-range van der Waals interactions between the fluids
and the solid are not included. These and other limitations and
inadequacies represent work yet to be done.
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